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SUMMARY

This report presents the results of a study of the influence of higher
order and nonlinear effects on the free vibration behavior of thin, cir-
cular cylindrical shells. A recent solution utilizing the Karman-Donnell
strain-displacement relations is examined and criticized. A new solution
is carried out which removes the basis for criticism and discloses the
existence of a nonperiodic vibration behavior, a phenomenon heretofore
unknown. Further, solutions are obtained using the strain-displacement
relations deduced by Sanders and applied, in an appropriately modified
manner, by Mayers and Rehrield to the shell postbuckling problem. The
effect of the improved strain-displacement relations in predicting the
vibration behavior attendant to a modal shape possessing a small number
of circumferential waves is assessed, and recommendations are nade for

directing future effort on the problem.
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INTRODUCTION

" In the past, the problem of the instability of thin, circular cylindrical
shells subjected to a variety of loadings has been the object of intense
theoretical and experimental investigation. A closely allied problem,
that of the vibrations of thin, circular cylindrical shells, has also
come under careful scrutiny, but not to the same extent nor with the

apparent success relative to the instability problem.

The studies related to the vibrating cylindrical shell problem have, for
the most part, been contained within the framework of linear theory.

Notable contributions to the early development of the vibrating cylindri-
cal shell problem are contained in the work of Rayleigh,l Love,2 Fl’dgge,j

)
and Arnold and W’arburton.J"5

A relatively small amount of work has been
accomplished concerning the vibrational characteristics outside the realm
of linear theory with the well-known Karman-Donnell equations. To assess
the merit of this work and to place the present investigation in proper
perspective, it is pertinent to dwell somewhat on that part of the liter-
ature which deals specifically with the free nonlinear vibrations of thin,

circular cylindrical shells.

The first significant step toward the understanding and scluticn of the
nonlinear problem emanated from the work of Eric Reissner- :in 1955, This
paper, although restricted to the linear theory of thin, shallow elastic
shells, was the first to show that for vibration in which the predominant
motion is radial, the equations of motion admit an important simplification.
Specifically, for predominately radial motion of shallow shells, Reissner6
shows that the midsurface inertia terms (that is, the inertia terms due %o
motion in the axial and circumferential directions) can be neglected and
only minor errors will result. Then, the three coupled simultaneous dif-
ferential equations of motion can be simplified tc a system of two simul-
taneous differential equations with the dependent variables being the
well-known Airy stress function and the radial displacement. This latter
set of two coupled differential equations, independent of radial inertia
considerations, becomes the well-known equations governing the static

instability problem of thin, circular cylindrical shells. The basis for

1



this simplified set of equations governing the phenomena of static in-
stability is contained in an investigation by Donnell.7 The work of
Donnellj complementary to the classical large deflection theory of flat

plates, is generally referred to today as the Karman-Donnell shell theory.

Later in 1955, Reissner8 published a paper,utilizing shallow shell theory,
dealing with both the linear and nonlinear nonaxisymmetric vibrations of
thin, circular cylindrical shells. The portion of the work pertaining

to the linear theory specializes the earlier work of Reissner to the
geometry peculiar to a thin, circular cylindrical shell. For infinitesimal
deflections, Reissner assumes that the radial displacement function is
representable as a chessboard pattern. That this assumption is valid is
strongly substantiated by the experimental evidence of Arncld and

)
Wa.rburton,u’5 Gottenberg,9 and most recently by Koval and Cranchlk and

Kova.l.ll In the last-nocted reference of Kova.l,ll no mention is made of
comparison to linear theory, but a straightforward calculation shows that
the experimental results are almost identical to those obtained using the
frequency equation derived by Reissner.8 In the nonlinear portion of
Reissner's study,8 it is assumed that the nonlinearity has a more pro-
nounced effect on the arbitrary time function, which modifies the choice
ot' deflected shape, than on the deflected shape itself. Hence, the chess-
board shape is used also for the nonlinear vibration problem. However,
even though the chessboard deflection pattern is a natural choice for
linear vibration problems, its selection in the nonlinear problem must

be more carefully assessed. In particular, it has been well known in
shell postbuckling problems (see, for example, the work of von Karman

and Tsien)12 that the continuity condition on the circumferential dis-
placement must be enforced. This basic geometric constraining requirement
must also be employed in the nonlinear shell vibration problem. However,
the use of the chessbcard pattern leads to a circumferential displacement
that is not a periodic function of the circumferential coordinate.
Evensen13 was the first to point out that this continuity requirement

was not satisfled by the choice of deflected shape assumed by Reissner.tj



Another solution, similar to Reissner's,8 was presented by Chu.lh Again,

as pointed out by Evensen,lJ the continuity requirement for the circum-
2

ferential displacement was not satisfied. Evensenl” further notes that
ir u paper presented by Nowinski,15 the continuity condition for *he
circumferential displacement is taken into account; as a consequence,
however, a nonzero radial displacement occurs at the ends of the shell.
On the other hand, the radial displacement condition utilized by Evensen,
as well as by Reissner . and Chu,lk is that of vanishing radial displace-
ment at the shell edges. It should be noted, however, that this difference
in the boundary conditions would not likely cause appreciable difference
in the vibrating shell problem provided that the modal representation of

the deflected shape possessed a large number of axial waves. This latter
13

13

point is not mentioned by Evensen.

Chulh and Nowinsk115 arrived at results which showed that the nonlinear

Qibrational characteristics of the shell exhibited ncnlinearity of the
hardening type (that is, an increase in the radial displacement magnitude
is shown to lead to an increase in the frequency of radial vibration)
which, in some cases, could be strongly nonlinear. These findings were
challenged by Evensen,l3 who claimed that the nonlinearity was of the
softening type (that is, an increase in the radial displacement magnitude
is shown to lead to a decrease in the frequency of radial vibration) and
was only slightly nonlinear.

In the latter part of 1965, Evensen and Fulton16 presented a paper on the
nonlinear dynamic response of cylindrical shells which is an expanded

13 original investigation. Evensen and Fultonl6
arrive at results which modify Evensen'313 original conclusion (that

is, that the shell exhibits either hard or soft behavior depending

version of Evensen's

upon the numerical values of the wavelength parareters attendant to
the assumed modal shape). The theoretical results are in agreement
with an experiment performed by 013u317 in 1965. However, the bcundary
conditions utilized in the wcrk of Evenser. and Fu.ltcn10 rellect suppcrted,
rotationally restrained ends, whereas the experimen: ccnducted by Olson17

reflects end clamping.



The objective of the present investigation is to study further the non-
linear free vibrations of thin, circular cylindrical shells on the basis
of considerations heretofore excluded from theoretical work appearing in
the literature. It is shown that the energy level (potential plus kinetic)
associated with a given modal shape is an important consideration in the
nonlinear free vibration problem. The initial portion of the stddy, based
upon the Karman-Donnell equations, reveals that the valid solution, cor-
responding to a modal pattern possessing a large number of axial waves and
described in terms of free parameters, is the one that reflects minimum
energy considerations, rather than the one that requires the vibration
behavior to be periodic. This latter condition is utilized by Evensen

and Fulton in Reference 16. It is clearly demonstrated hat minimum
energy considerations for a free variation of the modal pattern assumed

in Reference 16 lead to a nonperiodic motion for the free nonlinear
vibrations of thin, circular cylindrical shells. Further, when the
number of axial waves in the modal pattern is small and the influence

of boundary conditions must be acccunted for, the adoption of a more
general deflected shape than that employed in Reference 16, but satis-
fying the same boundary condition, again reveals the existence of a
nonperiodic motion. In this latter case, the nonperiodic motion re-
flects an energy level, for identical initial conditions, equal to that
associated with the deflected shape chosen in Reference 16. The non-
periodic motion, in all cases investigated, appears to be almost periodic.
This behavior has important implications concerning the interpretation of

the results obtained in experimental investigations.

The present study is not limited, as are the previously referenced non-
linear studies, to vibrations where there are a large number of circum-
ferential waves present. That there are a large number of circumferential
waves is the basic assumption justifying the utilization of the Karman-
Donnell equations. Hence, to surmount the restriction on the use of the
Karman-Donnell formulation of the shell problem when the number of cir-
cumferentia. waves is small, it is necessary to employ a more accurate
set of strain-displacement relations and, at the same time, to retain

the midsurface inertia terms. The observations by Reissner 8 that



GoB e

——

midsurface inertia terms may be neglected when the number of circum-

ferential waves is large can no longer be invoked.

The more accurate strain-displacement relations employed are attributed
to Sanders18 and were used, in a modified form, by Mayers and Rehfieldlg
in a study of the postbuckling characteristics of thin, circular cylin-
drical shells. As illustrated by Mayers and Rehfield,19 the postbuckling
solutions obtained on the basis of the modified Sanders relations can be
utilized to establish the range of validity of elastic, large deflection
solutions (specifically, those based on the Karman-Donnell formulation)
in terms of shell radius-to-thickness ratio. The ramifications of these

findings relative to the nonlinear shell vibration problem are pursued.

Differential equations of motion and the attendant boundary terms are
developed on the basis of a variational procedure. Approximate solutions
of the equations are obtained, and the results presented clarify former
work and yield new information regarding the nonlinear vibrational char-
acteristics of thin, circular cylindrical shells.



THEORETICAL CONSIDERATIONS

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations used in this study were deduced by

Smdeu.le For the thin, circular cylindrical shell, the midsurface

strains can be reduced to the form

du 1
0 t 2
X ox 2k
dv ) 1
Qe 2ot (9)° (2)
du, Ov
0 t
Ty dy ! ox ' xy 2)
vhere
dv
t
% = - (1)
X ox
ow, v
o, = -(—t + —t) (5)
9y R
The total strains are then given by
€ - eg + = (6)
0
¢ = e, t A (7)
Yoo * 70 + 22« (8)
xy Xy Xy
vhere u, , v, , and w, (see Figure 1) are the axial, tangential, and

radial components of displacement, respectively, and

1
< - ﬁ 5 < - El ; X = _(& + a—ol) (9)
& 3x - Xy 2\dy ox



Substitution of Equations (1) through (5) and (9) into Equations (6)
through (6) yields the strain-displacement relations

2 2
PN
u dx 2 \ox ox

2 2 2
th w, 1 [<bwt> v, Bwt Vt] <a we 1 th>
€ Z e — - — + 2 o —— - |- Vi S 4 = —
y dy R 2 \oy R oy R dy R dy

el ca

Xy dy  ox ox Oy R ox

4 = ——

2
du ov awt Bwt vy Bwt <2 0 Wy 1 th>
3xdy R ox

Equations (10), (11), and (12) are valid when (1) the Kirchhoff-Love
hypothesis holds (that is, when a straight line segment that is per-
pendicular to the middle surface of the undeformed shell remains
perpendicular to the deformed middle surface while undergoing
negligible strain relative to its original length), (2) the strains
and rotations of line elements on the shell midsurface induced by
the deformation remain small in comparison to unity, although the
components of the displacements are not necessarily small, and (3)
the angles of rotaticn about the normals to the shell midsurface re-
main negligibly smaller than the rotations out of the midsurface

throughout the deformation.

Although the Sanders Equations (10), (11), and (12) appear as a dis-

(11)

(12)

placement formulation in terms of a tangential v-displacement notation,

they can be written in terms of a circumferential v-displacement nota-

tion to effect a convenient simplification as shown by Mayers and
9
Rehfield.l‘ In the alternate form, the equations become

Jou 1 dw 2 aew
SR
Bx 2 ax 5;5

ov w 1 [<aw>2 v Bw] (Bew 1 dv
g = —e=t=ll=) o= s - —
¥ dy R 2y R dy dy Ray)

(13)

(1)



and

(15)

D e - -

"By B bx

7 T eam ot com | e et o e eme o 7

v du dwdw Vv ow (82w 18v>
2 Ox Jdy O0xJdy R x

It may be noted that Equations (13), (14), and (15) reflect no quadratic
terms in the midsurface displacements alone. Also, for a large number
of circumferential waves, the equations can be further simplified by
elimination cf any v-displacement contributions to the curvatures and

twist,

TOTAL POTENTIAL ENERGY

The total potential energy, in the absence of body forces, consists of
the strain energy stored in the body and can be expressed as
! 27R +h/2 B e 2, (L-vi 5 T
U = —z= &, T &, " Qve et ———1 dxdydz (1
2(1-y°) X Y Xy 2 Xy
0 0 -h/2

Substitution of the expressions for the strains from “quations (13),
(14%), and (15) into Equation (16) and integration over the constant
thickness of the shell yield

o

Eh fj«nR Cou 1 <5w>2 ]L [Bv w1 <5w>2 v 6w]2
U = ———— —_t = — ] e B ] )
2(1-y7) 5 5 be 2 \ox d9y R 2 \oy R oy
[au 1 <aw)2] "3V W 1<aw>"’ v aw] (1-v) [au
+ 2yl —+=[— S (Ut UG gy -
ox 2 \ox L dy R 2\9y R oy 2 Ly
v owow Vv S D fi'enk (82w>2
b ot —m o = — dxdy + -
Ox Ox dy R ox] 2 ¢ 8 g)?
2 2 .
w1 v 3%y ¥ 1av\ (@-v) / 3%
+ s t-=—]+ 2y = N— S 2
% Ry x/\3y° Ry 2 dxdy
1 ov 2
+ - - dxdy (17)
R ox
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KINET1C ENERGY

The kinetic energy is the sum of the rinetic energies associatel witl

axial, circumferential, and radial velocities, respectiwvely; that is,

{ 2nR +h/2 WV /3w /auV
f f f 0 [<—> +<—> +<—>] dxdyd= (g
S & e ot ot ot

Integration over the constant thickness yields

1 J Ly TR R S RN
T = - ph ff —_) =) + —> dxdy (19)
2 3 ot ot ot

0

3
[AOT T ]

VARIATIONAL PRINCIPLE

The application of Hamilton's principle requires that the simultaneous
first-order change in the Lagrangian (L = T-U) , integrated over a
specified time interval, with respect to admissivle variations in the
degrees of freedom characterizing the state of strain (namely, u, v,

and w ) must vanish; that is,

to

i = \

5u,v,w f (T-U) it 0 (20)
*l

Enforcement of this condition yields the Euler equations of <he variation,
or the differential equations of moticn of the shell, together with the

attendant boundary terms.

FEULER EQUATIONS

The Euler equations (that is, the displacement equaticns of motion),
valid for both periodic or nonperiocdic mctions, resulting Trom the

variation ore given by

E { ) [Bu 1 (Bw )2] d v w 1 /3wy v dw
2 — ] am— i | am— + Yo — =t = (——- ) > e —
(L-v7) U oxLox 2\dx oxldy R = \&y R dy

N

o/

Qs
<

—t et — e o (21)

+

n

ko)
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ct

(1-y) 9 [Bu ov Owow Vv dw }

2 Jyloy ox Odx9dy R
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Eh 9 { ow [Bu v Oowow Vv aw]}
+ — e t e t o ot - —

2(1+y) oy (ox Ldy oOx OxOdy R ox
Eh 0O WV )[Bu v Owow Vv Bw]} 5u
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The foregoing displacement equations of motion can be written in a more

concise form by employing Hooke's law. Since Hooke's law states that

E

o _ 0 0
e R Rt A

O - E (0., 0 (28}
y (1-v§) y " ¥y > /
0 . 0

T = o )

¥ ooaw) W

then, though utilization of Equation (24), the equations of motion can

be written as

Bo'g+ﬁ ) 3%
g‘ > = p; (25)
; S LR R LN
ﬁ dy x RLYdy o -(:5)-123 :)ngza_y
1 [(1-v) ¥r v o
[—?;z” g el
[
E DVhw+Ei-(V2v) —h?—[coua—w-rro (E:+Z)]
‘ R dy xL*¥ax ®\3y =r
d [  dw h 3%
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The equations can be written in a still more co

duction cf shear ard bending moment resultants

igure 0
+h/o
Mx | z Gxd:
-h/2
+h/2
M = z 7 d:z
Yy
-n/>
0!‘_/:‘
Mx;.' ] = Tx:,'dz
-n/2
oM oM
Q = . S
ox dy
oM oM
% .. J + —ﬂ
oy ox
Then use of the definitions given by Equation (
of motion to be written as
2
3° a8l 3u
—x- + = 0 e
dx dy ot~
ao° ar° ) 0
= - - -—+ r (
dy 3 R y dy Rh
and
3 M M b [, 0w
X 42 XXy s+ h=— fo- =+ 71
ox oxdy  dy ox ox
) dw 0 Bw h
+ hes |O ==+ 1 + (—) o

12

mpact form by the intro-

def'ined as fcllows (see

‘28)

e

/
28) allows the equations
(29)

Bzv
Y

(53

= < ph
3w

(30)

ow v

-— -

dy R

¢
Xy

(31)




e

or In the linearized form as

200 o1 2y
—— _—i = P ——p{ (52)
ox dy ot
d07  dTe (1
.4 + -——-L‘ = (—) Qy = — (: )
oy ox Rh at"
and
%M 3%M oM 3%
Ex 2 Al 4 - +(-—) 7 = -ph—s (34)
dx Ixdy dy R o

)

The linearized equations <Z notion, reduced to the static case, are not
identical to the linear set presented by Sanders in Reference 20. The
only difference between the two sets of linear equations i< a consequence
of the neglect, in the present development, of effects associated with

rotations about the normal to the shell midsurface.

BOUNDARY CONDITIONS

The boundary conditions which result from applicaticn cf Hamilton's
prirciple (Equation (20)) are given, for both pericdic and nonperiodic

motions, in general form as

he = O or su= 0 & x = G (35)

0 D (1-v) (82»: 1av)
2

ht + —= t+=—=—J)= 0 cr & = C at x = 0,!
R e Oxdy R ox 3
P

o Pw 1% o [

-D —3+(2-v) = + = + ho (—)
ox Oxdy R Oxdy * \ax
0 ow A

+ h1 (_ + -) = 0 or 8w = 0 at x = 0, { 3T
Ty =®
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and

(aew ( 82w 1 v ow
D + v +——-) = 0 or 5(—-) = 0 at x = Q,!
g?) g}:? R dy ox

REDUCTION TO CLASSICAL EQUATIONS

A simplified set of Euler equations can be obtained if the Karman-Donnell
strain-displacement relations are used in place of the more complicated
set of strain-displacement relations given by Equations (13), (1k4), and

(15). The Karman-Donnell strain-displacement relations are given by

+ - -z (39)
ox =

o 1(aw)2 354
= B—X 2 ox

v w l(aw)2 Bew

€ = =mc=mt=|l—]) -z (40)
y dy R 2 Wy 5‘72
. du ov Ow dw 3w
_'_/7 = et o—t — — . 27 (41)
:, i dy Ox Ox oy 3xdy

Substituting Eduations (39), (40), and (41) into the Lagrangian and
carrying out the variations in accordance with Hamilton's principle -
leads to the following simplified set of stress-displacement equations

of motion for the axial, circumferential, and radial directions,

respectively.
300 3t 3%
=+ = = (42)
3% v at®
80'0 81’0 62\/
= (43)
oy ox ot

1k
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DUV'W - heme |0 ewe ¢ 1" e e hem |07 am ¢ 1 —--5(-)-.;,};
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ey

Now, if the motion is predominantly radial (as wvher there are a large
number of circumferential waves in the modal pattern), then Equaticne
(L2), (43), and (44 admit still another and quite drastic simplifica-
tion, that cf neglecting the midsurface i{nertia ter.':;. The Justificetion
for this simplification was first rcted by Reissnd¥ '~ Thug, with *he

midsurface inertia terme omitted, the equilitr! equatigns beccme

0—& s C (h"

+ J a o (hé)

ox
and
N . 2
n d 0% A v d o ¥ 0 v h 3w
Wau-h=—|Jo =+t —=|-h=|o =s+1 —]-c (=] =-¢ch—x
dx dx Y ¥y dy | Yy ¥ 4 3t
(u7)
Equations (45 and (4€) can ncw be satisfied {dentically ty the intre-

duction cf an Airy stress functicn [T defined such that

2
A
P
x
¥
0 . oF I~
v ax” ‘
2
0 dF
X Ixdy



Then, use of Equations (45), (Lo), and (48) perm.ts the lateral

equilibrium equation to be written as

’ 2 2 2.0 N2 2N 2 2

| O°F 7w O°F 0w OFdw hy O°F 7w
Ww-h|l=s—=—x-2C i - ] '(')"’7\' = - ph —= (49)

dy” dx” Ixdy Oxdy  Ox~ oy R/ ox” Fh

A second equation involving the stress function and the radial displace-
ment can be obtained by combining Equations (Z4), (39), (L0), (41), (45),
(46), and (LB) to yield

L A 5 62w E ng
VFE = E ( il Bl (30)
Oxdy x~ dy” R dx"

_This compatibility equation was developed first by Donnell.7 Equations
(49) and /50), with the radial inertia term omitted, are one of the
equation sets commonly referred to as the Karman-Donnell equations;
these equations govern the large-deflection behavior of thin shells in

the presence of midsurface forces.
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METHOD OF SOLUTION

The differential equations obtained in the previous section which re-
flect the utilization of strain-displacement relations equivalent to
those of Sanders are three highly nonlinear coupled equations in the
three dependent variables u, v, and w . On the other hand,
Karman-Donnell strain-displacement relations, with the midsurface
inertia terms neglected, admit the reduction to two simultaneous
differential equations involving only the stress function and the
radial displacement. This reduced set of two simultaneous equations

is still highly nonlinear and coupled but is much more manageable than
the set of three simultaneous differential equations. The solutions
reflecting the use of both sets of strain-displacement relations are
obtained by employing the direct method of the calculus of variations
(that is, the Rayleigh-Ritz method). The solutions corresponding to
the strain-displacement relations which result in the Karman-Donnell
equations ((49) and (50)) are discussed first for the case when a large
number of circumferential waves are present. The solutions corresponding
to the Sanders strain-displacement relations (Equations (21), (22), and
(23)) are discussed subsequently for the case when a small number of

circumferential waves occurs.

SOLUTIONS FOR A LARGE NUMBER OF CIRCUMFERENTIAL WAVES

In all of the existing analytical studies of the nonlinear vibrations of
thin, circular cylindrical shells, except for the work reported in Ref-
erences 13 and 16, it is assumed that (1) the radial displacement is
representable by a chessboard pattern, (2) the shell possesses many
circumferential waves (that is, the shallow-shell behavior), and (3) the
midsurface inertia terms can be neglected. If indeed there are a large
number of circumferential waves present, then assumption (3) seems in-
tuitively correct. Assumption (1), however, seems intuitively incorrect.
As noted by References 13 and 16, utilization of the chessboard pattern
for the radial displacement leads to a violation of the periodicity con-
dition for the circumferential displacement. Even if the periodicity

condition relative to a chessboard pattern for the radial displacement

17




could be satisfied by selecting a special homogeneous solution for the
stress function (Reference 13 alludes to having accomplished this, but

no details are presented), it still seems intuitively incorrect that the
radial displacement pattern for a large number of circumferential waves
would be an exact chessbcard pattern. Some consideration must be given

to the degree of midsurface siretching and, consequently, to the increased
level. of energy that would be necessary to produce a pure chessboard pat-
tern. It would appear that, for finite radial displacements, a aisplace-
ment pattern which allows the shell to move inward would be more likely
to occur since this type of displacement pattern should involve less
energy and, hence, lead to the equilibrium position that the shell would
seek. This intuitive reasoning, which is founded on a knowledge of shell
behavior in the axial compression postbuckling problem, is shown in retro-
spect to be justified. '

Fixed Parameter Solution (n Large)

For a uniform homogeneous shell, the study reported in Reference 16 is
based on the assumption that the radial displacement which satisfies the
geometrical constraints of the problem (that is, freely supported ends)
is representable, save for a shift of coordinate system origin, in the

following form:

w nx LA N 2nx >
(- ) S yl(t) COS == COS == + = yl(t) COS —— + = yl(t) (51)
h AL Ay 8 A, O _

where yi(t) is an arbitrary function of time. The above choice of de-
flected shape, while not being perfectly general, is a discerning one

in that, in addition to satisfying the geometric boundary conditions,

it also leads to satisfaction of the continuity constraint on the cir-
cumferential displacement. Further, by restricting the time dependent
coefficients to terms proportional to yl(t) and 'yi(t) , the resultant

motion is forced to be periodic, although not harmonic.

In Reference 16, the Galerkin prccedure was used to obtain the governing
differential equations; subsequenc solution of the equations was carried

out by means of a perturbation technique. Since the Galerkin integral .
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wproach !iseloses no information relative to energy level, the present
investigation reformulates and solves the problem by using the vari-
ational approach: the radial displacement given by Equation (51), to-
gether with the stresses obtained from Equations (48) and (50), is
substituted into the Lagrangian (see Appendix I for development). The
enforcement ot the vanishing of the first ve =:! on of the Lagrangian
with respect to yl(r) leads to a single st ond-order nonlinear dif-
ferential equation with yl(T) as the dependent variable. After re-
duction of the single second-order differential equation to two coupled
first-order differential equations, the solution is obtained by employing

a standard Kutta-Merson numerical method.

The results obtained verify that the curves in Reference 16 representing
the nonlinear free, but periodic, vibrational characteristics are indeed

correct. These results are shown in Figures 3 and 4.

However, the occurrence of the multivalued conditions of (1) different
amplitudes for a given wave pattern at a fixed value of the frequency
and (2) different wave patterns for the same amplitude at a given fre-
quency requires the approach of the present analysis, which establishes
the lowest level of energy associated with a particular condifion. The
discussion of this point is expanded in the section on "Results and
Discussion". It is also observed that the periodic solution, which is
based upon a vanishing radial deflection at the cylinder ends, implies
that the vibrational behavior is influenced by the boundary conditions
in the presence of a modal patiern containing a small number of axial
waves., Although the case of a small number of axial waves is not the
general problem being investigated herein, it will be shown in the next
section that a more general radial dellection function (one which results
in the vanishing of the radial deflection at the shell ends and leads tc
satisfaction of the v-displacement periodicity condition) does not reflect
necessarily a periodic motion based upén the minimum energy criterion.
For long shells (large number of axial waves), the nonperiodic vitrational

behavior is shown, for all cases, to correspond to the minimum energy

solution when the parameters of the radial deflection funetion of Reference

16 are free rather than fixed.
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Free Parameter Solution (n Large)

If the shell modal pattern reflects several or more waves in the axial
direction, then it is reascnable to assume that the boundary conditions
will not sigrnificantly influence the frequency of vibration. Then the
deflected shape used in the fixed parameter solution of the previous

section can be made more general and representable as

W X ny anx
(-—) = yl(t) COS == COS = + y%(t) COS = + y.(t) (52)
h o) 3 2 A 2
X v X

where yl(t) R yB(t) , and ys(t) are arbitrary functions of time. The
substitution of the radial displacement given by Equation (52) and its
associated stress function, obtained from Equation (50), into the con-
tinuity condition for the circumferential displacement yields the re-

quirement

vs(t) = i) (53)

Hence, the deflected shape is now given by

w nx Ty 21X N 5
(— ) = yl(t) COS — CO§ == + yj(t) COS —=—— + — yl(t) (54)
h Rx ly kx 8

The substitution of the radial displacement given by Equation (54), to-
gether with the stresses obtained from Equations (48) and (50), into the
Lagrangian (see Appendix I for development), and enforcement of the
vanishing of the first variation of the Lagrangian with respect to

yl(T) and yj(T) lead to two second-order nonlinear differential
equations with yl(T) and y3(1) as the independent variables. After
a change of the independent variable and subseruent reduction of the

two second-order differential equations to four first-order differential
equations, the solution is obtained by employing a standard Kutta-Merson

numerical method.

A comparison of the maximum radial displacement for the fixed parameter
solution possessing the same modal shape and the same initial conditions

is shown on Figure 5. The free parameter solution, reflecting only a



change in the initial value of y3 , leading tc the minimum energy

solution is shown in Figure 6.

A comparison of the nondimensicnal strain energy parameter for the cases
where the initial velocities are zero is given in Figures 7, ¢, and 9

for different combinatior.c of the modal shape and initial displacements.

When the shell modal patteri reflects a small number cf axial waves, the
choice cf deflected shape, which enforces the vanishing radial deflection
condition at the shell ends, can be made more general than that given in

Reference 16 and is representable as

w nx ny - ST
(—) = yl(t) cOs — co§ — - [y:(t) + - ;.';(t‘] 20—
- 6 =

h Xy by A,
2nx U
- s'B(t) COS —— + — yl(‘c> (55)
)‘x &

The radial deflection (Eryiation (55)) leads tc identical satisfaction
of the v-displacement periodicity ccndition. The resulting solution,

obtained in a manner analogous to the previous free parameter sclution,
yields a nonperiodic vibrational behavicr. A ccmpariscn <f the maximam
radial displacements, reflecting ‘he different assumed deflecticn func-

tions, is given on Figure 5.

SCLUTION FOR A SMALL NUMBER OF CIRCUMFERENTIAL WAVES

For a uniform homogeneous shell, the strain energy and “he kinetic energy
are given by Equations (17) and (18), respectively. Functicns representing
the degrees of freedom u, v, and w , which satisf the continuity 2en-
dition on the circumferential displacement but are arbitrary with time,

may be taken in the form

W nx Ty
<-) yl(t) COS =— COS =

h X\ \
X Yy

n

] A, A, X,

B,

u nx ny 2nrx eny “nx
n(—) ys(t) sin — cos — + y5(t) sin —— cos =— + v (*) sin — }(56)
A
x
(

Continued)
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“<V ) nx Ty 2nx 2ny 2ny
=) ="y (t) cos = sin = + y._(t) cos == sin = + y_ . (t) sin —
h 9 3 R \ \ = A

X Y £ v v

where y,(t) , y5(t) , y5(t) ) y7(t) " y9(t) » ¥13(t) , and y ,(t) are
arbitrary functions of time. Now, the substitution of Equation (56) in-
to Equations (17) and (18) and the enforcement of the simultaneous vanish-
ing of the first variation of the Lagrangian (L = T-U) with respect to

v (1) y3(0), yg(n) y7(T) , yg(f) » ¥11(7) , and y;5(1) lead to a
set of seven second-order nonlinear coupled differential equations.

After a change of the independent variable and subsequent reduction of

the 7 second-order differential equations to 1L first-order differential
equations (the details of which are given in Appendix III), the solution

is obtained by employing a standard Kutta-Merson numerical method.

The degree and character of the nonlinearity, reflecting the employment
of the modified Sanders strain-displacement relations, are shown in
Figures 10 and 11 for the case of finite initial displacements but zero
initial velocities.
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RESULTS AND DISCUSSION

In the free vibration of a physical system represented or idealiied by

a set of linearized equations, the magnitude of the resulting displace-
ments and the energy associated with these displacements is indeterminate.
However, if the equations representing the physical system are not lin-
earized, the displacements and the attendant energy then possess a unique
determinate value for any given set of initial conditionms.

It is known that in the solution of the postbuckling problem of a thin,
circular cylindrical shell, the determination of the minimum energy is of
primary importance. One of the solutions given in Reference 12 predicts
that the shell will be in tension in the postbuckled state under the ac-
tion of an applied compressive end load. This predicted solution is
obviously incorrect, as is pointed out in Reference 21. The solution is
rejected because it does not, in general, represent the minimum energy
for the particular choice of radial deflection function selected. Hence,
since energy considerations are important in the understanding and compre-
hension of the nonlinear shell postbuckling problem, it would appear that
these same considerations would prove to be vitally important to any solu-
tions of the nonlinear shell vibration problem.

That the energy level for a given modal shape might be an important con-
sideration has not been brought out or explored to date. The most advanced
solution of the nonlinear shell vibration problem (Reference 16) makes no
mention of energy considerations relative to the assumed modal shape. It

is stated in Reference 14 that, for a large number of circumferential waves,
the square wave pattern (that is, the chessboard pattern) has the least
strain energy. However, this statement is not correct, and this point is

discussed later in this section.
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Still another important facet in the understanding of the nonlinear free
vibration problem »f a thin, circular shell involves an analogy to the
static instability problem. In the nonlinear shell postbuckling problem
(see, for example, Reference 22), the simultaneous minimization is made
with respect to the r'vee parameters in the assumed deflected shape and
also with respect tc the modal wave parameters u and 1 . As such,

the number of axial and circumferential waves is continuously varying as
the mirimization is accomplished. However, the shell instability problem
is treated by means of a s:atic analysis, and a slightly different apprcach
is necessary in the free vibration problem. In the linear and nonlinear
free vibraticr problem, the basic assumption is introduced that the wave
parameters u and n are nct variables but are constant. This assump-
tion essentially implies that, if an experiment were being zonducted, and
if the modal shape and modal lines (w = O) could be detected, then this
modal shape and its modal lines would not vary with time. The implication
of this assumption relative to the assumed modal shapes chosen in the pre-
vious section is discussed subsequently.

The deflected shape chosen in Reference 16 (that is, the fixed parameter
solution reflecting a large number of circumferential waves) is a judicious
chcice. It has been shown in References L, 5, 9, 10, and 11 that the chess-
board pattern is indeed the pattern which the shell :zeeks when the displace-
ments involved are infinitesimal. Hence, it would seem logical to assume
that a slightly modified chessboard pattern might emerge as the modal pat-
tern when the displacements are increased from infinitesimal to finite
values. In the analogous shell buckling problem (see, for example Ref-
erences 12 or 22), three of the most important terms in the representation
of the radial deflection are those selected in Reference 16. In addition,
the deflected shape selected in Reference 16 reflects zero radial displace-
ment at the ends of the shell and leads to a periodic solution in time when

the continuity condition on the v-displacement is enforced.
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Figures 3 and 4 depict the frequency behavior for the resultant periodic
motion as a function of the amplitude. The nonlinearity of the resulting
motion and the degree of hardness or softness of the system are highly
dependent upon the value of the wave parameter 1n ; for the same initial
displacement (assuming an initial velocity of zero), the nonlinearity
becomes more pronowiced as the value of 1n increases. Hence, for a
particular shell gecmetry (fixed (h/R) ) and a fixed set of initial
conditions, the degree of nonlinearity is increased as the number of

circumferential waves becomes larger.

It can be further noted from Figures 3 and 4 that the character of the
nonlinearity is dependent upon the value of the full wave aspect ratio

pu . In general, the results show that the vibrations usually exhibit

a soft.ening character when u <1 and a hardening character when pu >1.
In the present analysis, the strain energies associated with the various
choices of initial conditions and wave parameters have been determined.
Several values of the energy appear on Figures 3 and 4. In particular,

it is noted that at a certain set of fixed initial conditions (an initial
displacement of unity and an initial velocity of zero) the energy increases
considerably as the value of the full wave aspect ratio u increases (see
Figure 4). This is more clearly shown in Figure 12. In a like manner, the
increase in energy associated with an increase in the wave parameter n is

shown on Figure 13.

It is noted that at the crossover points on Figure 3, the energies are not
whe same. For instance, at the point corresponding to the coordinates

y; =1.91 and wK-Dﬁ”L = 0.75 , the energy associated with the p =1
modal shape is 185% higher than the energy associated with the u = 0.707
modal shape. This indicates that for the same frequency and displacement,
the modal shape is dependent upon the energy. Hence, in an experiment
where a large frequency spectrum is examined, certain modes may never
appear if the vibration excitor cannot inject sufficient energy to the
shell. This is particularly true for the higher levels of energy which
occur for pu >1 .
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Another point not mentioned in Reference 16, but worthy of mention here,
can be noted in Figure 1k, which is a partial plot of the modal shape

for the listed choice of deflected shape. As can be seen in Figure 1k,
the aspect ratioc is not constant but is variable. However, if the whole
wavelength of modal shape is considered and the aspect ratio of the wave-
form is taken as the average cver this whole wavelength, then it can be

considered as a constant.

Further, it should be pointed out that the solution obtained in Reference
16 is presumably valid for the range of values of the wave parameters
presented. As such, the solution should be valid when the number of
axial waves is large or small. However, It appears that while the
solution presented in Reference 16 is the most advanced solution to

date, new insight into the problem is gained through energy considera-
tions. The result of freeing all parameters in the assumed radial de-
flection functions, compatible with assuring the continuity condition

on the v-displacement, leads to nonperiodic motions when the number of
axial waves is either large or small. Also, although the motion is non-
periodic, strictly speaking, in certain cases it appears similar to the
periodic fixed-parameter solution (see Figures 5 and 6). Hence, too
casual an observation of experimental results might lead to the erroneous
conclusion that the motion is periodie.

e P

When the number of axial waves is small, the enefgy levels reflecting the
deflected shapes (Equations (51) or (55)) are identical for the present
choice of initial conditions, but the more general chocice of deflected
shape (Equation (55)) leads to a nonperiodic motion while the solution

of Reference 16 (that is, Equation (51)) leads to a periodic motion (see
Figure 5). Although the case of a small number of axial waves is not the
case of interest for the present investigation, it is highly probable that
introducing a still more general radial deflection function for the "freely
supported" case will yield a nonperiodic sclution which possesses a lower
energy level than that associated with the radial deflection functions
given by Equations (51) and (55). This conjecture is based on the known

tendency for thin cylinders deformed into many waves to depart more and
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more from the chessboard modal pattern as larger and larger amplitudes
of the radial deflection occur.

When the number of axial waves is large, the nonperiodic solution, which
reflects the radial deflection given by Equation (5&), leads to a lower
energy than the periodic solution (Equation (51)). The lower energy,
associated with the nonperiodic solution, can be seen on Figures 7, 8,
and 9. On Figure 7, the minimum energy occurs almost identically at
the value of y3 which Reference 16 employs. That is, however, only
chance occurrence. In Figure 8, the true minimum energy solution re-
flects a significant difference in the value of ¥3 from that which
was utilized in Reference 16. Further, it is interesting to note that
a lower value of the N displacement shifts the y3 value for the
minimum energy from a higher to a lower value. From this observation
and a perusal of the strain energy expression for the free parameter
solution (see Equation (68)), an important physical consequence can be
deduced. As the value of N becomes smaller and smaller (that is, as
it approaches infinitesimal values), the minimum point shifts farther

and farther to the left; this leads to the conclusion that for infinitesimal

values of vy the minimum energy is the solution corresponding to

y3 = 0 2. This observation, coupled with the fact that vy <1 implies
that vy <<'1 , leads to the conclusion that in approaching the limit

of infinitesimal displacements, the least energy solution reflects the
chessboard pattern. That this is true can also be deduced from Figure 9.
This figure shows that for a small value of displacement (yl = 0.01) ,
the minimum energy solution exists for ¥y = 0 ; hence, further credence
is given to the deduction discussed above. This deduction is important.
It shows that only when the displacements are very small is the minimum
energy solution representable as a chessboard pattern; it also shows that
for finite displacements of the order of magnitude of the shell thickness,
the minimum‘energy is related to a slightly modified chessboard pattern.
This shows why in the linear, small displacement experimental studies
(References 4, 5, 9, 10, and 11), the predominant evidence indicated that
the chessboard pattern was the actual pattern developed by the vibrating
shell.
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5till annther and important consideraticn deals with the validity of
the sclution concerning the rotation limits allowable within the scope
of Karman-Donnell theory. "This consideration was used in Reference 19
in discussing limitations on the validity of several well-known solu-
tions of the postbuckled shell problem. The maximum rotations must be
small in comparison to unity (5 percent is considered herein to be the
limiting value). Then, Figures 15, 16, 17, and 18 show conservative
estimates of the limitations inherent ir the solution. The severe
limitations on the u = 2 case (Figure 18) shoculd be noted. For a

'

¥y = the R/h of the shell must be greater than or equal to 4500

to be within the range of allcowable rotations. Thus, for shells which
are in the range of practical interest (100 < % < 3000) , the validity

of the present sclution wculd have to be restricted (for the u = 2 _—

case) tc smaller amplitudes. It may be noted further that the restric-
tions on the validity of the solutions are less stringent for other
values of u (see Figures 15, 16, and 17). Hence, unless the displace-
ments experienced by the shell are relatively large, the limitations
concerning the allowable rotation do not appear to be critical for the
free vibration problem. However, these limitations could become con-
siderably more important, for example, in a dynamic buckling or a forced
vibration study.

For vibration with lcw values of n , the Sanders strain-displacement
relations have been used and the midsurface inertia terms retained. With
the retention of the midsurface inertia terms, the occurrence of three
frequencies for each given modal configuration is possible (see, for
example, References 4 and 5). However, each of the frequencies will
have different amplitude ratios; of the three possible values of the
frequency, the important one is that associated with the primarily
radial motion of the shell walls. This value is several orders of
magnitude lower than either of the other two, which are associated
primarily with axial and circumferential motlons, respectively. The
deflected shapes and the attendant initial conditions assumed in this
investigation again reflect the interest in only the motion which is

predominantly radial.
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Due to the complexity of this nonlirear shell vibration problem, the

free vibration solutions presented herein are based only upon the basic
chessboard modal pattern. For small amplitudes, the crnessboard pattern
continues to provide a periodic motion, whiech is not necessarily the

true situation. Thus, where quantitative rather than qualitative behavior
is of prime importance, the chessboard pattern must be modified to permit

the possibility of the occurrence of a ncnperiodic vibration behavior.

In the modal pattern associated with n = 2 , the nonlinearity cf the
resultant motion, as in the case when the number of circumferential
waves is large, is highly dependent upon the value of the wave parameter
n . For a fixed number of circumferential waves (here n =2 ), the
low values of =n reflect the behavior of a thin shell, whereas the larger
values of n reflect the behavior of a thicker shell. Representative
curves depicting this behavior are shown in Figures 10 and 11. In
Figures 10 and 11, it is shown that no detectable nonlinearity is
observed until the (R/h) ratio is less than 1000 . For gradually
increasing thickness, the nonlinearity becomes pronounced. In Figure 10
for a full wave aspect ratio of unity, the ratio of nonlinear to linear
frequency for (h/R) =1/100 and (w/h) = 16 reaches 1.165 or 16.5%
beyond that which linear thecry would predict. In Figure 11 for a full
wave aspect ratio of 1/2 , the ratio of nonlinear to linear frequency,
again for (h/R) = 1/100 and (w/h) = 16 , reaches 1.25 or 25% over
that which linear theory predicts.

For the large values of deflection necessary to produce a pronounced
nonlinearity when the number of circumferential waves is low, it is
imperative to ascertain at what point the limitations on the rotations
are exceeded. Representative values for n =0.04 and u = 1.0 are
shown on Figures 19 and 20, While these limitations are intended to

be only a qualitative, conservative estimate, it is apparent that the
(¢x)2 limitation is more critical than the ((py)2 limitation. In
particular, for n =0.04 and p = 1.0 , the data of Figure 20 predict
that (¢x)2 will exceed its allowable limit for an (R/h) = 100 some-

where between t»e point where the initial n displacement is between
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10 and 12, For = 12 , the character of the nonlinearity is given
in Figure 10. Again, the consideration of the size-of-rotations limita-
tion on the validity of the theory does not appear to be critical for
the free vibration problem. However, large amplitude behavior, in con-
nection with dynamic buckling or forced vibration analyses, could lead

to restrictions on the validity of solutions for specific shell geometries.
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CONCLUDING REMARKS e

’
The governing differential equations and the attendant boundary cond:itions
for the nonlinear free vibration of thin, ecircular cylindrical shells have
been developed by variational procedures by the use of both the Karman-
Donnell and & set of appropriately modified Sanders strain-displacement
relations. Approximate solutions, obtained by the direct variational
approach, are utilized to re-examine and provide new interpretation to
established approximate solutions for shells possessing a large number

of circumferential waves (that is , when the Karman-Donnell formulation

is valid). Approximate solutions, which reflect the use of the modified
Sanders formulation for shells possessing a small number of circumferential
waves, are obtained and are believed to be the first application of this

higher order shell theory to a nonlinear free vibration problem.

The solutions, which reflect the utilization of the Karman-Donnell for-
mulation for a representative assumed modal shape possessing a large or
small number of axial waves, reveal the existence of nonperiodic motions.
When it is reasonable to assume that the boundary conditions at the shell
ends will not significantly affect the frequency of vibration (that is,
when the modal shape possesses a large number of axial waves), the non-
periodic solution reflects a lower energy level than the established
periodic solution which always implies the boundary condition of "freely
supported" ends. Wnen the boundary conditions have a more pronounced
effect on the vibration behavior "(that is, when the modal shape possesses
a small number of axial waves), the resulting motion in the first approxi-
mation for "freely supported" ends is again nonperiodic, reflecting, in
the present development, an energy level equal to that for the pericdic
solution. Although the solution corresponding to a small number of
axial waves was not the general case under investigation. it may be
conjectured that the introduction of a more general deflection function
than the one employed will result in a nonperiodic motion reflecting a
lower energy level than the periodic solution. For the representative
cases investigated herecin, the nonperiodic motions for an assumed modal

shape possessing either a large or small number of axial waves appear to
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be almost pericdic. This phenomenon has extreme significance in the
interpretation of experimental results. Unfortunately, very little
experimental information concerning the nonlinear free vibration be-

havior of thin shells exists.

When the number of circumferential waves 1s small, the Karman-Donnell
theory becomes invalid and it is necessary to employ a more accurate
set of strain-displacement relations, specifically those attributed to
Sanders, while at the same time retaining the midsurface inertia terms.
Due to the inherent complexity of this nonlinear shell vibration prob-
lem, the solution presented herein is based only'upon the basic chess-
board modal pattern. This then results in a vibration behavior which
exhibits pronounced hardening characteristics. Retention of additicnal
terms in the expression for the radial deflection function will permit
the possibility of the occurrence of a nonperiodic motion which may, for
certain representatfve cases, appear to be almost periodic, exhibiting

either a hardening or a softening characteristic.

For the case when a large number of circumferential waves occurs (Karman-
Donnell theory), and for the case when a small number of circumferential
waves occurs (Sanders theory), limitations on the two theories are pre-
sented based upon the magnitude of the allowable rotations at large dis-
placements. For the free vibration problem, relatively large amplitudes
can be tolerated without exceeding limitatiorns on rotation magnitudes.

Future effort on the problem of the vibrating circular cylindrical shell
should include the effects of damping and should consider the problem of
the nonlinear response of a shell to forced vibration. However, the re-
sults of a theoretical development are most beneficial when they can be
complementary to the results of an experimental investigation. The future
development, as regards the behavior of tne nonlinear free and forced
vibration cf a thin, circular cylindrical shell, will rely heavily upon
the findings obtained from experimental studies. Certainly, at the least,
the predicted phenomenon of nonperiodic free vibration behavior for the
circular cylindrical shells should be verified in the laboratory,
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Figure 1. Circular Cylindrical Shell Coordinate System and Sign Convention.

Figure 2. Sign Convention for Shear Forces and Moments Acting on a Shell
Element.
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APPENDIX 1

DEVELOPMENT OF THE APPROXTMATE SOLUTICH FFOR A LARGE NUMBER CF
CIRCUMFERENTIAL WAVES FOR THE FIXED PARAMETER CASE

This appendix presents a step-by-siep development leading to the sulu-

tiocn presented and discussed in earlier secticns.

The governing differential equations were developed earlier and are

listed again as

3%F % 3t dfF % n\ O°F 3w
MR RN Cwwoem) \5)iE T T
and
) % ¥ 3% 3% | [E\ 5
VF = E o (58)

Oxoy i Q dy R sz

The deflection function for a shell vibrating in the nth mode is given

by
W X woon o, anx M 5
<- = ¥,(t) cos — cos — + =y (t) cos — + =y (¢t) (59)
h A, xy g A, &

Substitution of the deflected shape into Equation (58) and subsequent

solution yield the followirng expression for the stress function:

2Eh2u2 1 3 1 nx ny
F=-—é-§ =yl - =y, COS === COS ~—=
(14.7) 8 & 2n * )\x }\y
2Eh2u 2 N5 3nx ny Eh"u e 2ny
- ———=x—x - y] €O == cC8 — - Vo 00§ em—— (50
(5 e "t W

The deflection function and the stress functicn giver by Equations (99

and (60) lead to satisfaction of the requirement that <he circumflerential

displacement be a periodic function of the circumferential cocrdinate.



The Lagrangian (L = T-U) can be written as follows:
{ 2aR

h
2 2
(U-T) = -2—E f f [(rrx + cy) - 2(1+y) (crxcry - Txy)] dxdy
0 0

A A 2 2

D et <8"w> <82w> 52w o w ( )<52w >
+ = + + 2y — + 2(1-y dxdy

2 ¢ & g)? gz a—xé ay'? Oxdy

(61)
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The relations between the stresses and the stress function are given by
Equation (48). Substitution of the deflected shape and the stress func-
tion into Equation (61) for the Lagrangian, after integration over x
and y , ylelds

L b 6 3

2
nEn’ \ " 1 ¥y 4 ney 1
e 2y S "N
R 4 16 (1+9u°) (14u7) 8 2

2 24 2 2 2
nyl}4 ' <+2+n u>+ n JULLI
i y —-_Y ¥y ¥
2 ) B\ 2 M saad) o) b

=
u

+

2 2 2

1 dy 3

: <i)(_l) <1 il y’;’> (62
L\E ar 8

where T 1is a nondimensional independent variable related to the time
t by the following relation:

£ ¢ (63)

The application of the variational principle relative to yl(’t) yields



FISTER

- .
d%l 1 . Cﬁj h<E>[qu
— = - t=ny, |—) +4{—=]) [+ — X
dr (+ 2 + % nayf) bt \ar pc 4

the fullowing buler equation:

o 8 wo o1 Sy 1
* o S8 i1 Rl | B "
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3 2 4 2 22
yl] L PO y " o
Hes e L Sy BN S By e
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Equation (6k4) is & single second-order differential equation in “he in-
dependent variable T . By making a change of variable, the single
second-order differential equation in 7T is reduced to two coupled

first-order differential equations in 7 . The required change of

variable is given by
i, /

Then, the two coupled first-order equations in T become

dyl
dt
. and
—— 0 = - - NY.¥ -+ + X
ar (+ 2+ ﬁ q2yf) o L2 ;:5 L
4 2 3 . 2
+ Y + e [ ——— . — + - — ]+ =
81y 1 w®E\ 8 29} 8 o/ ¢
24 2 o 2
e 1 " }; =
+ + 2 + 20 7Y]) 4 ———y 4 — (7
48 (1-y2) & Yoanae®) Tt 121 1

Solution of the two coupled differential equations was carried ¢t b
standard numerical techniques in conjunction with utiliration o. *he

Burroughs 5500 computer in the Stanford University Ccmputaticn Center.
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APPENDIX II

DEVELCPMENT OF THE APPROXIMATE SOLUTION FOR A LARGE NUM:ER OF
CIRCUMFERFENTIAL WAVES FOR THE FREE PARAMETER CASE

This appendix presents a step-by-step development of the solution when

the assumed deflected shape is more general than that used in Appendix I.

‘The deflection function is given by

W rX y 2nx
-] = yl(t) COS == COS == + V.(t) cos ~— + y5(t) (68)
h N o ° A

X Ng X

The stress function, olttained as in Appendix I, is given by

2
2Ehgu“ 1 ax y
F B o ——ﬂ-? + yly3 - 2—1'] yl) COS === COS ===

2
(147) N )\y
22 2 2
2Eh u 3nx ry Eh ( ¥y L 2nx
- ¥,¥; COS = cos — - + =+ -y ) cos ——
(149,2)2 "173 77y N 162\ 2 g3 A
X g X
Eh2uC 5 2ny
N (69)
32 Xy

The continuity condition for the circumferential displacement is given

by the following mathematical representation:
7“R v 2R ey % 3P\ w1 fowy
— dy = f - -y + = e e | dy = 0 (70)
5 dy S E 5;? 5"’ R 2 \dy

Substitution of the deflected shape and the stress function into the

centinuity condition yields the following relation:

-
Vg = g Y1 (11)
Hence, the deflected shape now becomes
W nx wy 2ax 1 5
-] = yl(t) COS == OS5 — + y3(t) CO8 = + = yl(t) (72)
h a X\ A 8 .
X Y X
5
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Substitution of the deflected shape and the stress functiorn Into the
Lagrangian (in a manner cractly analogous to that described in Appendix 1,

after integration over x and y yields

xEn’p \ 1 e - e BT
= (U-1) = - te—mr VY3t (t Wy -

" R I (1+49.°) (i+a7) e
neuh 1 WY; 2 12u4 ) ,
Te(_uHF Ay
q2 o 1 1 pc2 dyl c N
) 48(1-v") e 2U(1ey”) Ly <T)[(ET—> <l v yl)

2 .
dy
+ 2(—-2>] ' (73}
dt

The application of the variational principle, relative to yl(T) and
yB(T) , yields two Euler equations. After the introduction of two
changes of variable defined Ly

:—1 = ¥, (74)
and

i vy, i (75)

at

the two second-order FEuler differential equations are transfermed into
four first-order differential equations. The first twe are given by

Equations (74) and (75). The remaining twc equaticns are

2 2 ¢
dyz c 1 . LE 1 Euhyly1
— - - —{r—y o — | = [ :
dr (+ SNt '.TQL y1) ¢ oc” 4 (1e9u)"

Buu 1 1 uh ,

+ + v 4
P Y- y WO = ="
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(Continued)




and
o]
dyh < E >{ 'q2 Suhyin 8;1‘ ( i )
== = Lk + Vi¥2 ==V
- p? L (1%2)2 (1 2)h g 1
l( n ) : —T"z“h } ()
- - _—-—-y + - Yy
n\ 2 n . 3 (1ay%) 2

Solution of the four coupled differential equations was carried out by
standard numerical techniques in conjunction with utilization of the
Burroughs 5500 computer in the Stanford University Computation Center.
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APPENDIX III

DWVELOPMENT OF THE APPROXIMATE SOLUTICN FOR A SMALL
NUMBER OF CIRCUMFERENTIAL WAVES

This appendix presents the development of the differential equationc cf

motion by the use of the strain-displacement relations deduced by Sanders.

The deflection functions are given by

W % 1y
-) = yl(t) COS = COS =

A A\
X M

3

0 nx Ty 2nx 2ny 2nx
nf - y3(t) sin — cos — + y5(t) Sin == 0§ === + ¥ (t) sin = (78)

i
A " )‘y )\x )\y .)‘x

13
h A Y A
x y x Yy Mo
J

v nx ny 2nx 2y ony
-)= y9(t) cOS = s5in — + yll(t) COS —=m= SiN === + y. . (t) sin ——

Substitution of the deflected shapes into the strain energy and the
kinetic energy expressions (Equations (17) and (1&), respectively) after

integration over x and y yields the following expression for the

Lagrangian:
_ xEn° 1\ nEn 1\
T = L(— = (———]) (U-T)
R R
2
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The application of the variational principle relative to vy,
}’5(1') s .‘/7(1) ’ 5’9(1') 4 yll('!; , and ylj('t,’ vields seven Euler eguations.

The following changes of variables are now emplcyed:

ayl L dy, i
— | = B ; P R :
dr . dt 10 T
ilj - dyll s
S ey ? gl
dt dt
) 0
3 . .
¢ ’ ».'ll*
dT 3 dart
o ..
P :
dt €

Next, the seven second-order differential eguations (in the independent
variable T ) are transformed to fourteen first-order differential
equations. The first seven of the fourteen eguations are given by

Equation (80). The remaining seven equations are
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Solution of the 14 coupled differential equations was carried cut by

o

standard numerical techniques in conjunction with utilization of the

R

Burroughs 5500 computer in the Stanford University Computation
=3 g - J 33
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